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Abstract

This work presents a superposition approach to investigate forced convection in microducts of arbitrary cross-section, subject to H1

and H2 boundary conditions, in the slip-flow regime with further complication of a temperature jump condition assumption. It is shown
that applying an average slip velocity and temperature jump definition, one can still use the no-slip/no-jump results with some minor
modifications. Present results for slip-flow in microchannels of parallel plate, circular, and rectangular cross-sections are found to be
in complete agreement with those in the literature. Application of this methodology to microchannels of triangular cross-section is also
verified by comparing the present results with those obtained numerically by undertaking the commercially available software CFD-
ACE.
� 2008 Published by Elsevier Ltd.
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1. Introduction

Analysis of heat and fluid flow at microscale is of great
importance not only for playing a key rule in the biological
systems, but also for its application in cooling electronic
equipment; see [1–3]. Modeling heat and fluid flow through
such small devices is different from the macroscale counter-
parts in being associated with the inclusion of slip velocity
and temperature jump, as noted by Tunc and Bayazitoglu
[4]; (see Sparrow and Haji-Sheikh [5] for a pioneering work
on velocity slip). For example, a gaseous flow at such small
passage does not obey the classical continuum physics
where the no-slip condition is valid. Consequently, such a
flow is associated with a non-zero fluid velocity at the solid
walls and there exists a difference between the gas temper-
ature and that of the wall. This can happen when
0.001 < Kn < 0.1 while the flow is called slip-flow. For such
flow the Navier–Stokes equation should be combined with
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the slip-flow condition so that the results can match exper-
imental measurements; for more details see [6–10].

Some authors defined a peripherally-averaged slip veloc-
ity and temperature jump for forced convection in micor-
ducts of arbitrary cross-sections and solved a new set of
equations subject to modified boundary conditions. This
paper will show that defining such average slip velocity
and temperature jump, one can still use the no-slip and
no-temperature jump results, which are available in the lit-
erature for both H1 and H2 cases (in the terminology of
Shah and London [11]).

It should be noted that the temperature field may have
different boundary conditions depending on the thermal
conductivity of the enclosures. In this study, consideration
is given to two different boundary conditions that often
appear in the literature being H1 and H2. The former
assumes a constant (independent of x*) longitudinal heat
flux while in each cross-section the wall temperature is con-
stant independent of y* and z*. The latter, presuming
locally constant uniform wall heat flux, allows for the wall
temperature to vary with y* and z* in each cross-section.
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Nomenclature

A cross-section area, m2

a length scale, m
amn coefficient defined by Eq. (21c)
B coefficient defined by Eq. (17)
b rectangular microduct dimension, m
b* aspect ratio for a rectangular microchannel
bmn coefficient defined by Eq. (23b)
C microduct inside periphery, m
cp specific heat at constant pressure, J/kg K
DH hydraulic diameter, m
F tangential momentum accommodation coeffi-

cient
f friction factor
Ft thermal accommodation coefficient
k thermal conductivity, W/m K
Kn Knudsen number
Lc characteristic length, m
Mm eigenvalues, Mm = (m � 1/2)p/b*

Nn eigenvalues, Nn = (n � 1/2)p
n* (coordinate) normal to the wall, m
P* pressure, Pa
Po Poiseuille number
Pr Prandtl number
r r*/R
Re Reynolds number
s* source term, W/m3

T absolute temperature, K
u dimensionless velocity Eq. (6)

u* velocity, m/s
U* mean velocity, m/s
û normalized velocity, u*/U*

x*, y*, z* Cartesian coordinates, m
(x,y,z) (x*,y*,z*)/Lc

Greek symbols

b slip coefficient
$2 dimensionless Laplace operator ðr2 ¼ L2

c
~r2Þ

C tangential coordinate at the microduct wall in-
side periphery, m

c specific heat ratio
k molecular mean free path, m
kn eigenvalue, kn=(2n � 1)p/2
l dynamic viscosity, Pa S
q fluid density, kg/m3

h dimensionless temperature
w, u, U auxillary functions
�sw average wall shear stress, Pa

Superscript
* dimensional

Subscripts

m mean
NS no-slip
s fluid properties at the wall
w wall

y*

   z*

x*, u*

C

A

Fig. 1. Schematic diagram of a microchannel of arbitrary but constant
shape.
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Interestingly, the analysis can be extended to porous-satu-
rated microducts subject to slip-flow conditions.

Morini [12] mentioned four technologies to build micro-
channels. Choosing any of these (or other counterparts) is
crucial as the geometry of a micro-flow device strongly
depends on the technology used to build it. For example,
according to Morini [12], producing microchannels by
chemical etching directly on the silicon wafers, the cross-
sectional shape depends on a number of factors like the
crystallographic nature of the silicon. He also notes that,
with other techniques, it is possible to have microchannels
of any cross-section. Therefore, more work on convection
through microducts of arbitrary cross-sections is called for.

This paper proposes a shorthand way of calculating slip-
flow forced convection from the already existing no-slip
solutions. Application of this methodology to microchan-
nels of parallel plate, circular, and rectangular ducts is ver-
ified by comparing the results with those available in the
literature. On the other hand, as there is no result in the lit-
erature for a triangular microchannel, applying the com-
mercially available software CFD-ACE, a numerical
simulation is also reported for comparison purpose.
2. Problem statement

Consider laminar fully developed forced convection in a
straight microconduct of arbitrary but axially uniform
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cross-section as shown by Fig. 1. The fluid is assumed to be
incompressible with constant properties. This slip velocity
can be found as

u�s ¼
F � 2

F
KnDH

ou�

on�

����
wall

ð1Þ

where u�s is the slip velocity, F is the tangential momentum
accommodation coefficient, n* denotes the coordinate
which is normal to the wall, Kn is the Knudsen number
(Kn = k/DH), and k is the molecular mean free path. On
the other hand, the fluid temperature at the wall, Ts, can
be different form that of the wall, Tw, i.e.

T s � T w ¼
F t � 2

F t

DH

Kn
Pr

2c
1þ c

oT�
on�

����
wall

ð2Þ

Here, Ft is the thermal accommodation coefficient, Pr is
the Prandtl number, and c is the specific heat ratio. The
local values of the slip velocity and the temperature jump
can change along the duct periphery; however, taking an
average over the periphery, these averaged values would
be independent of the transverse coordinates. These aver-
ages are denoted by an over-bar. For example, with C
being the tangential coordinate at a point on the microduct
wall inside periphery C, the average values (of slip velocity
and temperature jump) are

�u�s ¼
Z

C
u�s dC=C

T s � T w ¼
F t � 2

F t

Kn
Pr

2c
1þ c

DH

C

Z
C

oT �
on�

����
wall

dC
ð3a; bÞ

where with the H1 boundary condition T w ¼ T w.
Moreover, similar to Tunc and Bayazitoglu [4], the slip

coefficient, b, is obtainable as

b ¼ �u�s=U � ð4Þ
where U* = hu*i is the average velocity. The angle brackets
denote an average taken over the microconduct cross-
section.

The fully developed momentum equation, to be solved
subject to slip-flow condition, Eq. (1), is

l ~r2u� � dp�

dx�
¼ 0 ð5Þ

Defining the following dimensionless velocity

u ¼ �lðu� � �u�s Þ= L2
cdp�=dx�

� �
ð6Þ

the momentum equation reads

r2uþ 1 ¼ 0 ð7Þ
The new set of boundary conditions are u = 0 at the

walls.
Eq. (7) is the familiar dimensionless form of the fully

developed Navier–Stokes equation to be solved subject to
no-slip boundary condition, so we replace u by uNS. The
function uNS satisfies Eq. (7) subject to no-slip boundary
condition (see Shah and London [11] for a variety of solu-
tions for ducts of different cross-sections).
The only unknown is the average slip velocity, �u�s , to be
found, based on Eqs. (1) and (3a), as follows:

�u�s ¼
F � 2

F
Kn

DH

C

Z
C

ou�

on�

����
wall

dC ð8Þ

The average wall shear stress, in the fully developed
region, is related to the pressure gradient as

�sw ¼
l
C

Z
C

ou�

on�
dC ¼ � dp�

dx�
DH

4
ð9Þ

Thus �u�s reads

�u�s ¼ �
dp�

dx�
2� F

F
Kn
l

DH

DH

4
ð10Þ

or in dimensionless form

�us ¼
2� F

F
Kn

DH

2Lc

� �2

ð11Þ

Eq. (11), in its general form, was also obtainable by
applying the Green’s function as noted by Haji-Sheikh [13].

Consequently, one finds the velocity distribution for the
slip condition as

u� ¼ ð�dp�=dx�Þ uNS þ
2� F

F
Kn

DH

2Lc

� �2
 !

L2
c=l ð12Þ

where the average velocity, U*, reads

U � ¼ ð�dp�=dx�ÞL2
c

Z
A

uNS þ
2� F

F
Kn

DH

2Lc

� �2
 !

dA=ðAlÞ

ð13Þ
Dividing by the velocity scale and dropping the stars,

the dimensionless average velocity, U, reads

U ¼ UNS þ
2� F

F
Kn

DH

2Lc

� �2

ð14Þ

Note that

UNS ¼
Z

A
uNS dA=A ð15Þ

can be obtained from the literature. Then, it is easy enough
to define

U ¼ UNS

B
ð16Þ

Combining Eqs. (14) and (16), one gets

B ¼ 1

1þ 2�F
FUNS

Kn DH

2Lc

� �2
ð17Þ

One obtains the normalized velocity, û ¼ u�=U �, in
terms of no-slip normalized velocity, as

û ¼ BûNS þ 1� B ð18Þ
It means that knowing the no-slip results, one can use

the above equation to find the normalized velocity distribu-
tion in case of a slip-flow. Observe that as Kn ? 0 then
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B ? 1 and the solution tends to that of no-slip, as
expected. Note also that Eq. (18) is general as there is no
mention of the cross-sectional shape.

It is an easy task to show that the slip coefficient, b,
takes the following form:

b ¼ Kn

Knþ 2Lc

DH

� �2
FUNS

2�F

ð19aÞ

or simply

b ¼ 1� B ð19bÞ

As an example, one can recover the parallel plate micro-
channel, with Lc = a being the half channel width and
DH = 4a, which is the easiest case. For this case, one has
UNS = 1/3, and B ¼ 1

1þð24�12F ÞKn=F that leads to
b ¼ ð24�12F ÞKn=F

1þð24�12F ÞKn=F . Moreover, the normalized velocity now
takes the following form:

û ¼
3
2
ð1� y2Þ þ 12 2�F

F Kn

1þ 12 2�F
F Kn

ð20aÞ

Assuming F = 1, one has

û ¼ 3

2

1þ 8Kn� y2

1þ 12Kn
ð20bÞ

that is in complete agreement with the previous studies; see
for example [7,14–16].

As another example, one can mention the case of a
microtube, of radius a, where one has UNS=1/8,
B ¼ 1

1þð16�8F ÞKn=F , b ¼ ð16�8F ÞKn=F
1þð16�8F ÞKn=F , and û ¼ 2ð1�r2Þþð16�8F ÞKn=F

1þð16�8F ÞKn=F
which is in line with previous reports, see [15,17] for
instance.

For the more complex case of a microduct of rectangu-
lar cross-section (size 2a � 2b) with aspect ratio b* = b/a,
one has DH = 4b/(1 + b*) where Lc = a leads to

B ¼ 1

1þ 2�F
FU NS

Kn 2b�
1þb�

� �2
ð21aÞ

Making use of Eq. (21a) and the average no-slip velocity
profile reported by Haji-Sheikh [18], i.e.

U NS ¼
X1
n¼0

X1
m¼0

amn

amn ¼
2

b�MmN n

� �2
1

M2
m þ N 2

n

ð21b; cÞ

the slip coefficient reads

b ¼ Kn

Knþ 1þb�
2b�
� �2 F

2�F

P1
n¼0

P1
m¼0amn

ð22Þ

The normalized velocity now takes the following form:
û ¼
P1

n¼0

P1
m¼0bmn cosðMmzÞ cosðN nyÞ þ 2�F

F
2b�

1þb�

� �2

Kn

P1
n¼0

P1
m¼0amn þ 2�F

F
2b�

1þb�

� �2

Kn

bmn ¼ ð�1Þmþnb�MmN namn

ð23a; bÞ

Besides, the Poiseuille number, Po = fRe, which is of
particular interest for microchannels, reads

Po ¼ 2�sw

U �
DH

l
¼ 2

U
DH

2Lc

� �2

ð24aÞ

Note that as U = UNS/B then Po = BPoNS or

Po ¼ B
2

U NS

DH

2Lc

� �2

ð24bÞ

For a microchannel of parallel plate, circular, and rect-
angular cross-section, respectively, one has

Po ¼ 24

1þ ð24� 12F ÞKn=F

Po ¼ 16

1þ ð16� 8F ÞKn=F

Po ¼ 1

1þb�
2b�
� �2P1

n¼1
1
k4

n
1� tanh knb�

knb�

� �
þ 2�F

2F Kn

ð24c – eÞ

It should be noted that PoNS for the rectangular case is
taken from Hooman and Merrikh [19] with kn = (2n � 1)p/
2. It is also interesting that Hadjiconstantinou and Simek
[20] and Morini et al. [6] have reported a similar Po func-
tion for microchannels of parallel plate cross-section. How-
ever, absent in their reports was similar correlation for
rectangular cross-sections. On the other hand, recent work
of Duan and Muzychka [21] lead to a more complicated
form of Po while the results are found to be very close to
those of present study. Applying the above closed-form
solutions, Table 1 is presented to show Po and b, with
F = 1, for different cross-sections and Kn values.
2.1. Heat transfer aspects: the H1 case

Assuming constant fluid properties, the fully developed
thermal energy equation reads

qcpu�
oT �

ox�
¼ k ~r2T � ð25Þ

where, following the application of the first law of thermo-
dynamics to an element, the longitudinal temperature gra-
dient takes this form

oT �

ox�
¼ 4q00

qcpU �DH

ð26Þ

with DH = 4A/C being the hydraulic diameter.
Making use of Eqs. (26) and (18), the fully developed

thermal energy equation can be rewritten as



Table 1
Poiseuille number and the slip coefficient for microchannels of different cross-sections (values in the parenthesis are correspondent to slip coefficient)

Cross-section Kn

0 0.001 0.01 0.1

Equilateral triangular 13.3 (0) 13.2119 (0.0066) 12.4688 (0.0625) 7.98 (0.4)
Circle 16 (0) 15.873 (0.0079) 14.8148 (0.0741) 8.8889 (0.4444)
Square 14.2 (0) 14.0916 (0.0076) 13.1857 (0.0714) 8.0261(0.4348)
Rectangle b* = 4 18.3 (0) 18.1225 (0.0097) 16.6675 (0.0892) 9.245 (0.4948)
Parallel plate 24 (0) 23.7154 (0.0119) 21.4286 (0.1071) 10.9091 (0.5454)

K. Hooman / International Journal of Heat and Mass Transfer 51 (2008) 3753–3762 3757
k ~r2T� ¼ 4L2
cq00

DH

ðBûNS þ 1� BÞ ð27Þ

that should be solved subject to T � ¼ T s on the walls.
Defining h ¼ T ��T s

4q00L2
c B=ðkDHÞ

, the boundary conditions
become h = 0 at the walls, and the dimensionless thermal
energy equation reads

r2h ¼ ûNS þ B�1 � 1 ð28Þ

Generally, it is an easy equation to solve where the
source term, the second term in the right-side, is not chang-
ing within the duct cross-section.

An easier way of tackling this problem, is to design a
decomposition as

h ¼ wþ ðB�1 � 1Þu ð29Þ

leading to

ûNS ¼ r2w

1 ¼ r2u
ð30a; bÞ

with w = u = 0 at the walls. Solution to Eq. (30a) is avail-
able in the literature for the most industrially-important
ducts, see Shah and London [11] for example. It should
be noted that though, in most cases of interest, Eq. (30b)
is very simple to solve, the literature on heat conduction
can provide us with analytical solutions for it, see Beck
et al. [22]. It is also worth commenting that Eq. (7) is sim-
ilar to Eq. (30b) in being extensively analyzed for different
solid bodies subject to isothermal boundary conditions
with a uniform internal heat generation.

Once Eqs. (30a and b) are solved, one can apply the
solution obtained for h, to find T* as

T � ¼ T s þ
4q00L2

cB
kDH

h ð31Þ

The only unknown is T s that can be found, based on Eq.
(3b), as follows:

T s ¼ T w þ
F t � 2

F t

Kn
Pr

2c
1þ c

DHq00

k
q�

q� ¼ k
q00C

Z
C

oT �

on�

����
wall

dC
ð32a; bÞ

Furthermore, the bulk-wall temperature difference is
obtainable as
T b � T w ¼
DHq00

k
Bhb

2Lc

DH

� �2

� 2� F t

F t

2c
1þ c

Kn
Pr

q�
 !

ð33Þ

with T b ¼ hûT �i being the bulk temperature.
The Nusselt number, Nu, which is normally defined as

Nu ¼ q00DH

kðT w � T bÞ
ð34Þ

takes the following form:

Nu ¼ 1

2�F t

F t

2c
1þc

Kn
Pr q� � Bhb

2Lc

DH

� �2
ð35Þ

For parallel plate microchannel, one has
w=(6y2 � y4 � 5)/8 and u = (y2 � 1)/2 leading to

�hb ¼
17þ 168Knþ ð24� 12F ÞKnð14þ 140KnÞ=F

35ð1þ 12KnÞ ð36Þ

With Lc = a, DH = 4a, and q* = 1, Nu reads

Nu ¼ 1
2�F t

F t

2c
1þc

Kn
Pr þ

17Fþ168KnFþð24�12F ÞKnð14þ140KnÞ
140ð1þ12KnÞðFþð24�12F ÞKnÞ

ð37Þ

Assuming air as the fluid, with c = 1.4 and F = Ft = 1,
Pr = 0.7, one has

Nu ¼ 420ð1þ 12KnÞ2

51þ 28Knð3600Kn2 þ 780Knþ 61Þ
ð38Þ

Considering a microtube as another example, one has
q* = 1, w=(4r2 � r4 � 3)/8, and u=(r2 � 1)/4 leading to

�hb ¼
11þ 64Knþ ð16� 8F Þ8Knð1þ 6KnÞ=F

48ð1þ 8KnÞ ð39Þ

with Lc = a and DH = 2a, the Nusselt number reads

Nu ¼ 1
2�F t

F t

2c
1þc

Kn
Pr þ

11þ64Knþð16�8F Þ8Knð1þ6KnÞ=F
48ð1þ8KnÞð1þð16�8F ÞKn=F Þ

ð40Þ

Similar to the previous example, one assumes
F = Ft = 1, Pr = 0.7, and c = 1.4 to observe that

Nu ¼ 144ð1þ 8KnÞ2

33þ 48Knð320Kn2 þ 104Knþ 13Þ
ð41Þ

Following Haji-Sheikh [18], for a duct of rectangular
cross-section the no-slip/no-jump temperature distribution
is obtainable as
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w ¼ � 1

UNS

X1
n¼0

X1
m¼0

bmn

M2
m þ N 2

n

cosðNnyÞ cosðMmzÞ ð42Þ

Besides, one can obtain u as follows

u ¼ �
X1
n¼0

X1
m¼0

bmn cosðN nyÞ cosðMmzÞ ð43Þ

Combining Eqs. (42 and 43) with Eq. (21a), one has

h ¼
X1
n¼0

X1
m¼0

Gmn cosðN nyÞ cosðMmzÞ ð44aÞ

wherein

Gmn ¼
bmn

U NS

F � 2

F
Kn

2b�

1þ b�

� �2

� 1

M2
m þ N 2

n

 !
ð44bÞ

The bulk temperature now reads

hb ¼
1

4U NS

X1
n¼0

X1
m¼0

bmnGmn ð45Þ

Finally, having hb from the above equation, Nu is read-
ily obtainable as

Nu ¼ �1

Bhb
1þb�

2b�
� �2 � 2�F t

F t

2c
1þc

Kn
Pr q�

ð46-aÞ

with

q� ¼ �B
b�
X1
n¼0

X1
m¼0

Gmnð�1Þmþn Mm

N n
þ Nn

Mm

� �
ð46-bÞ

The analysis can be extended to other cases (asymmetric
heating) of the H1 boundary condition, like those reported
by Kuddusi [23], where the no-slip/no-jump solutions can
be found in Hooman et al. [24].

2.2. Heat transfer aspects: the H2 case

For this case, the analysis is similar to the H1 case with
the only difference that the boundary conditions for the
temperature are of the second kind, i.e.

q00 ¼ �k
oT �

on�

����
wall

ð47Þ

This means that q* = 1 so that the temperature jump
reads

T s � T w ¼
q00DH

k
2� F t

F t

Kn
Pr

2c
1þ c

ð48Þ

The thermal energy equation, Eq. (27), is still valid while
there is a need to (at least) two filtering functions to
homogenize the boundary conditions for T, which is the
transformed temperature profile. Doing this, another
source term, say a function like, s* will emerge in the ther-
mal energy equation as follows

k ~r2T þ s� ¼ 4L2
cq00

DH

ðBûNS þ 1� BÞ ð49Þ
Next task is to solve Eq. (49) subject to oT
on� jwall ¼ 0.

Available in the literature is a great deal of information
on solving similar problems, as reviewed by Shah and Lon-
don [11]. Consequently, one has the solution for T and, in a
similar fashion, T* will be obtained. Finally, one integrates
T* over the duct periphery to find the average wall temper-
ature, to apply in Eqs. (3b) and (34), that, along with the
average wall temperature, leads to the Nusselt number.
As an example, by recovering the analytical solution
reported by Hooman and Haji-Sheikh [25], we show the
procedure for a duct of rectangular cross-section
(2b � 2a) of aspect ratio b* = b/a. They defined the trans-
formed dimensionless temperature as

U ¼ T � T i

q00a=k
¼ T � � T i

q00a=k
� y2

2
þ z2

2b�

� �
ð50Þ

leading to s = (1 + b*)/b*, i.e.

4a
DH

ðBûNS þ B� 1Þ ¼ r2Uþ 1þ b�
�1 ð51Þ

Eq. (51), in its turn, can be decomposed into two easier
equations as

U ¼ C1U1 þ C2U2 ð52Þ

wherein

r2U1 ¼ ûNSð4a=DHÞ
r2U2 ¼ 1

ð53a; bÞ

The wall boundary conditions, for i = 1,2, are

oUi=on ¼ 0 ð54Þ

while the coefficients Ci are

C1 ¼ B;

C2 ¼
4a
DH

ðB� 1Þ � ð1þ b�
�1Þ:

ð55a; bÞ

Solution to Eqs. (55a and b) are available in Haji-Sheikh
[18] Haji-Sheikh et al. [26], and Yu and Ameel [27] so that,
the local and average wall temperature functions are read-
ily obtainable and, consequently, the bulk temperature can
be determined. Finally, the Nusselt number reads

Nu ¼ DH=a
C1½Uw;1� < ûU1 >� þ C2½Uw;2� < ûU2 >�

ð56Þ

The remaining steps are very similar to those for the
examples given for the H1 case and, mainly for this reason,
are not repeated here.

3. Microchannels of triangular cross-sections

3.1. Theoretical analysis

Emphasizing on the generality of the proposed method,
based on the findings of previous sections, this section, pre-
sents the velocity and temperature distribution in a micro-
duct of triangular cross-section, subject to slip velocity and
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temperature jump condition. It is worth noting that there is
no closed-form solution for microducts of triangular cross-
section, to the best of the author’s knowledge, while (exten-
sive) numerical calculations can be an alternative approach
as reported by Zhu and Liao [28,29]. Another way of tack-
ling the problem is to use the approximate solutions
reported by Bahrami et al. [30] for no-slip case. However,
as it will be shown later, application of no-slip results for
flow of a rarefied gas can lead to erroneous results.
Throughout this work what meant by the triangular
cross-section is an equilateral triangle. However, it should
be noted that the method is equally applicable to other tri-
angular cross-sections.

Considering an equilateral triangular microduct of side
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Fig. 2. b and fRe versus Kn compared with previous studies for a
microchannel of rectangular cross-section.
z� ¼ a; z� þ 2a ¼ y�
ffiffiffi
3
p

, and z� þ 2a ¼ �y�
ffiffiffi
3
p

, the no-slip
velocity profile, as reported by Tyagi [31], is

uNS ¼
ð1� zÞððzþ 2Þ2 � 3y2Þ

12
ð57Þ

with

U NS ¼
3

20
ð58Þ

By definition, the coefficient B is obtainable as

B ¼ 1

1þ 40�20F
3F Kn

ð59Þ

Based on Eq. (18) the normalized velocity should be

û ¼ 5

3

ð1� zÞððzþ 2Þ2 � 3y2Þ þ 12ð2� F ÞKn=F
3þ ð40� 20F ÞKn=F

ð60Þ

One also obtains the average velocity and the slip coef-
ficient as

U ¼ 3

20
1þ 40� 20F

3F
Kn

� �
ð61Þ

and

b ¼ 1

1þ 3F
40�20F

1
Kn

ð62Þ

The temperature distribution is now obtainable as we
have

w ¼ �5ðz� 1Þððzþ 2Þ2 � 3y2Þðy2 þ z2 � 4Þ
162

ð63Þ

and
u ¼ ðz� 1Þððzþ 2Þ2 � 3y2Þ
12

ð64Þ

that will result in

h ¼ 5ðz� 1Þ
162

ððzþ 2Þ2

� 3y2Þ 18
2� F

F
Knþ 4� y2 � z2

� �
ð65Þ

The bulk temperature

�hb ¼
9
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1þ 80Kn

2� F
9F

1þ 7
2� F

3F
Kn

� �� �
1

1þ 40�20F
3F Kn

ð66Þ
will lead to the following Nusselt number:
Assuming F = Ft = 1 and c = 1.4, Nu reads

Nu ¼ 28

9

1þ 20Kn
3

� �2

1þ 80
27

Kn 49
270Pr
ð2þ 15KnÞð3þ 20KnÞ þ 3þ 7Kn

� �
ð68Þ
3.2. Numerical details

Commercially available software CFD-ACE (ESI Soft-
ware) is used, similar to Famouri and Hooman [32], to
solve the full set of momentum and thermal energy equa-
tion subject to slip-flow condition. Numerical values of
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the key parameters are selected to be identical to those
mentioned in the previous sections, for example F = 1,
Pr = 0.7, and c = 1.4. While the inlet velocity, temperature
and pressure are assumed to be known, a constant and uni-
form heat flux at the walls along with Eq. (26) (showing the
global energy balance), gives the outlet bulk temperature.
The computational domain, a triangular microduct of
dimensionless side 3.46 and length 50, was generated with
triangular grids for this 3D geometry using the commercial
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Fig. 3. (a) Slip coefficient and Po/PoNS, (b) maximum normalized velocity
(Kn = 0.004) for a microduct of triangular cross-section (F = 1).
package CFD-GEOM (ESI Software) that is typically used
in conjunction with the commercially available finite vol-
ume flow solver CFD-ACE.

Grids were controlled in CFD-GEOM using curvature
criterion, transition factor, and maximum and minimum
cell sizes. For each cross-section these values were 30�,
1.1, 0.25, and 0.00003, respectively. The results were found
to be accurate when 15 points on each side of the triangular
cross-section (a total of 45 on the periphery) and 100 points
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in longitudinal direction were applied. This combination
has lead to 20,790 cells. Grid-independence was tested by
control runs on a finer grid with 41,580 cells that produced
consistent results (with a maximum error being less than
3%). Hence, finer grids were not used in reporting the
results. It should be noted that the convergence criterion
(maximum relative error in the values of the dependent
variables between two successive iterations) in all runs
was set at 10�5.

4. Discussion

Closed-form solutions for parallel plate and circular
microchannels were validated in previous sections. On the
other hand, as the obtained results for rectangular micro-
ducts were originated from no-slip results there is no need
for further check versus macroducts. However, to show the
accuracy of the results for slip-flow cases, Fig. 2 is pre-
sented to compare present closed-form solutions with those
of previously published articles. According to this figure,
present results are in good agreement with those in the
literature.

Table 1 indicates the Poiseuille number and the slip coef-
ficient for the cases studied here. As PoNS is independent
ofKn, one concludes that the effect of rarefaction is to cause
a decline in Po. According to this table, the reduction in Po

can figure out at 44%, 44%, 50%, and 55% for circular,
square, rectangular (b* = 4), and parallel plate cases,
respectively. This is in line with previous results of Morini
et al. [6], Zhu et al. [28], Renksizbulut et al. [7], and Chen
[33]. At the same time, increasing Kn will lead to higher b
values, as expected. Note that for the case of a parallel
plate microchannel b can put on as high values as 0.54
when Kn = 0.1. This means that slip velocity can be as high
as 0.54U*.

Fig. 3a is presented to show the slip coefficient and the
Poiseuille number divided by those of no-slip counterparts
for a triangular microduct. As seen, increasing Kn

decreases/increases Po/b. This is expected as increasing
Kn can be interpreted as higher rarefaction that, in turn,
can lead to higher values for the slip velocity and, hence,
b should put on higher values. This is inline with the previ-
ous studies for microducts of rectangular cross-section; see
for example [4] or [34].

Fig. 3b shows the maximum normalized velocity, for
flow through a triangular microduct, versus Kn. According
to this figure, rarefaction can cause a decrease in the max-
imum velocity hinting that the velocity profile becomes flat-
tened which can lead to higher heat transfer rate. However,
this expected enhancement is affected by the presence of the
temperature jump similar to what reported by [27,35] for a
microchannel of rectangular cross-section. This figure also
compares theoretical results with numerical counterparts.
As expected, the results are very close and the deviation
is less than 2%.

Fully developed velocity contours are depicted in Fig. 3c
as another sample of the numerical results. It is interesting
to note that the fluid velocity puts on a non-zero value in
the near-wall region. More importantly, this slip velocity
is uniform along the duct periphery. This gives more credit
to the definition of an average slip velocity, �u�s . Though
both u�s and Ts can vary with y* and z*, the present
approach, that takes an average of these two variables
along the duct periphery, leads to reasonably accurate
results (at least for the cases studied here).

So far the Prandtl number value was fixed at 0.7 so there
is a need to see its effect on the Nusselt number. Fig. 4
shows the Nusselt number versus Kn for some values of
Pr. Seemingly, effect of rarefaction is to reduce Nu and this
is in line with the findings of Zhu et al. [36] for slip-flow
through a triangular microduct subject to cases 2 and 3
of H1 boundary condition. On the other hand, an increase
in Pr enhances convection as reflected in higher Nu levels.
This could also be concluded based on Eq. (67). For
Pr = 0.6 an increase in Kn from 0 to 0.1 causes a 24%
decrease in Nu while an increase in Pr = 0.6–0.8 leads to
nearly 14% increase in Nu when Kn = 0.1.
5. Conclusion

A new approach has been proposed to analyze heat and
fluid flow in microchannels of axially uniform but arbitrary
cross-section. One does not need to solve the governing
equations subject to temperature jump and/or slip velocity
boundary condition as the present superposition technique
will provide the solver with the solution in terms of those
available in the literature for no-jump and/or no-slip cases.
A comparison between present results, for slip velocity and
temperature jump, with those available in the literature has
shown excellent agreement. Fresh theoretical analysis of
slip-flow forced convection in microchannels of triangular
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cross-sections is also presented to emphasis on the applica-
bility of the proposed approach. However, one should note
that application of this method is restricted to laminar
steady fully developed (both thermally and hydrodynami-
cally) forced convection flow of an incompressible fluid
with constant properties.
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